

Home Search Collections Journals About Contact us My IOPscience

Exact solutions to non-linear chiral field equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 995

(http://iopscience.iop.org/0305-4470/11/5/030)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 30/05/2010 at 18:52

Please note that terms and conditions apply.

COMMENT

Exact solutions to non-linear chiral field equations

Dipankar Ray[†]

International Centre for Theoretical Physics, Miramare, PO Box 586, 34100 Trieste, Italy

Received 19 September 1977, in final form 30 December 1977

Abstract. Two types of exact solutions for the non-linear field equations for the chiral invariant model of pion dynamics are presented here. One of them is a generalisation of the solutions obtained by Charap. This more general solution includes the soliton solution as a special case.

1. Introduction

Under tangential parametrisation (Charap 1973) the field equations for the chiral invariant model of pion dynamics take the form (Charap 1976)

$$\Box \phi = \eta^{\mu\nu} \frac{\partial \phi}{\partial x} \frac{\partial \beta}{\partial x^{\nu}}, \qquad \Box \psi = \eta^{\mu\nu} \frac{\partial \psi}{\partial x^{\mu}} \frac{\partial \beta}{\partial x^{\nu}}, \qquad \Box \chi = \eta^{\mu\nu} \frac{\partial \chi}{\partial x^{\mu}} \frac{\partial \beta}{\partial x^{\nu}}$$
(1.1)

where

$$\eta^{\mu\nu} = \begin{cases} 0 & \text{for } \mu \neq \nu, \\ 1 & \text{for } \mu = \nu \neq 4 \\ -1 & \text{for } \mu = \nu = 4 \end{cases}$$
$$\beta = \ln(f_{\pi}^{2} + \phi^{2} + \psi^{2} + \chi^{2}),$$

 f_{π} is a constant, and ϕ , ψ and χ are the pion field triplet. The Lagrangian is given by $L = \frac{1}{2}(g_{11} \partial_{\mu}\phi \ \partial^{\mu}\phi + g_{22} \partial_{\mu}\psi \ \partial^{\mu}\psi + g_{33} \partial_{\mu}\chi \ \partial^{\mu}\chi + 2g_{12} \partial_{\mu}\phi \ \partial^{\mu}\psi$

$$+2g_{13}\partial_{\mu}\phi \ \partial^{\mu}\chi + 2g_{23}\partial_{\mu}\psi \ \partial^{\mu}\chi) \tag{1.2}$$

where the g_{ij} are such that Γ^l_{ij} , the Christoffel symbols, take the form

$$\Gamma_{ij}^{l} = -(f_{\pi}^{2} + \phi^{2} + \psi^{2} + \chi^{2})^{-1} (\delta_{j}^{l} \phi_{i} + \delta_{i}^{l} \phi_{j}).$$
(1.3)

In (1.3), ϕ_1 , ϕ_2 and ϕ_3 represent respectively ϕ , ψ and χ .

Charap obtained solutions of (1.1) under the assumption that ϕ , ψ and χ are all functions of $k_1x^1 + k_2x^2 + k_3x^3 + k_4x^4$ where k_{μ} is any four-vector. But such solutions give non-vanishing derivatives of ϕ , ψ , χ at infinity and hence cannot represent soliton solutions. However, in the present note, we shall see that equations (1.1) and (1.2) can be integrated under a weaker assumption that there exists some function u, such that ϕ , ψ and χ are functions of u. These solutions include the soliton solution as a special case. Another class of solutions of (1.1) and (1.2) will also be presented here.

[†] Now at Department of Physics, New York University, New York 10003, USA.

0305-4770/78/0005-0995\$01.00 © 1978 The Institute of Physics

996 *D Ray*

2. Generalisation of Charap's solution

Assume that there exists a function u such that

$$\phi = \phi(u), \qquad \psi = \psi(u), \qquad \chi = \chi(u); \tag{2.1}$$

(1.1) then reduces to:

$$(\phi_{uu} - \phi_{u}\beta_{u})(u_{1}^{2} + u_{2}^{2} + u_{3}^{2} - u_{4}^{2}) + \phi_{u}\Box u = 0,$$

$$(\psi_{uu} - \psi_{u}\beta_{u})(u_{1}^{2} + u_{2}^{2} + u_{3}^{2} - u_{4}^{2}) + \psi_{u}\Box u = 0,$$

$$(\chi_{uu} - \chi_{u}\beta_{u})(u_{1}^{2} + u_{2}^{2} + u_{3}^{2} - u_{4}^{2}) + \chi_{u}\Box u = 0.$$

(2.2)

 $\phi_u \equiv d\phi/du$ and so on; $u_1 \equiv \partial u/\partial x^1$, and so on. From (2.2), either

$$\frac{\phi_{uu} - \phi_u \beta_u}{\phi_u} = \frac{\psi_{uu} - \psi_u \beta_u}{\psi_u} = \frac{\chi_{uu} - \chi_u \beta_u}{\chi_u}$$
(2.3)

or

$$u_1^2 + u_2^2 + u_3^2 - u_4^2 = 0$$
 and $\Box u = 0.$ (2.4)

2.1. Case 1: (2.3) is true

(2.3) can be simplified to

$$\frac{\phi_{uu}}{\phi_u}=\frac{\psi_{uu}}{\psi_u}=\frac{\chi_{uu}}{\chi_u},$$

which, on integration, shows that ϕ and ψ are linearly related and so are ψ and χ . Then one can choose u, consistent with (2.1) such that

$$\phi = au + b,$$

$$\psi = cu + d,$$

$$\chi = eu + f,$$

(2.5)

where a, b, c, d, e and f are constants.

Putting (2.5) into (1.1) and (1.2), we see that (2.5) satisfies (1.1) if u is given by

$$\zeta = \int \frac{\mathrm{d}u}{(a^2 + c^2 + e^2)u^2 + 2u(ab + cd + ef) + (b^2 + d^2 + f^2 + f^2_{\pi})},$$
 (2.6)

where ζ satisfies

$$\zeta_{11} + \zeta_{22} + \zeta_{33} - \zeta_{44} = 0. \tag{2.7}$$

(2.6) can readily be integrated to give u in terms of ζ and (2.7) has the known solutions.

2.2. Case 2: (2.4) is true

(2.4) is satisfied by

$$u = G(k_1 x^1 + k_2 x^2 + k_3 x^3 + k_4 x^4),$$
(2.8)

where

$$k_1^2 + k_2^2 + k_3^2 - k_4^2 = 0, (2.9)$$

 k_1, k_2, k_3 and k_4 being constants, and G being an arbitrary function.

Thus, when u is given by (2.8) and (2.9), (2.1) gives a class of solutions of (1.1). However, other solutions of (2.4), if found, will also give solutions of (1.1) of the form (2.1).

3. Other types of solutions

Assume

$$\phi = \phi(x^{1}, x^{2}, x^{3} - x^{4}),
\psi = \psi(x^{1}, x^{2}, x^{3} - x^{4}),
\chi = \chi(x^{1}, x^{2}, x^{3} - x^{4}).$$
(3.1)

When ϕ , ψ and χ are of the form (3.1), equations (1.1) reduce to

$$\phi_{11} + \phi_{22} = \phi_1 \beta_1 + \phi_2 \beta_2,$$

$$\psi_{11} + \psi_{22} = \psi_1 \beta_1 + \psi_2 \beta_2,$$

$$\chi_{11} + \chi_{22} = \chi_1 \beta_1 + \chi_2 \beta_2.$$

(3.2)

It is to be noted that although ϕ , ψ and χ are functions of three variables x^1 , x^2 , $x^3 - x^4$, (3.2) involves two variables, x^1 and x^2 , only.

Although the present author has failed to solve (3.2) completely, particular solutions of (3.2) can be picked up easily. Two such solutions are presented here.

3.1. Solution 1

Assume

$$\phi = \phi(\alpha, x^3 - x^4), \qquad \psi = \psi(\alpha, x^3 - x^4), \qquad \chi = \chi(\alpha, x^3 - x^4), \tag{3.3}$$

where

$$\alpha = \alpha (x^{1}, x^{2}, x^{3} - x^{4}).$$
(3.4)

Proceeding as in § 2, but noting that $\alpha_1^2 + \alpha_2^2 \ge 0$, we get the following solution:

$$\phi = g\alpha + h, \qquad \psi = i\alpha + j, \qquad \chi = k\alpha + l, \qquad (3.5)$$

where g, h, i, j, k and l are functions of $(x^3 - x^4)$ and α is given by

$$\xi = \int \frac{\mathrm{d}\alpha}{(g^2 + i^2 + k^2)\alpha^2 + 2\alpha(gh + ij + kl) + (h^2 + j^2 + l^2 + f_\pi^2)}$$
(3.6)

and ξ satisfies

$$\xi_{11} + \xi_{22} = 0. \tag{3.7}$$

As before, the right-hand side of (3.6) can be integrated to express α in terms of ξ .

998 D Ray

3.2. Solution 2

Assume

$$\phi = \gamma(x^2, x^3 - x^4) p(x^1, x^3 - x^4),$$

$$\psi = \gamma(x^2, x^3 - x^4) q(x^1, x^3 - x^4),$$

$$\chi = \gamma(x^2, x^3 - x^4) r(x^1, x^3 - x^4),$$
(3.8)

such that

$$p^2 + q^2 + r^2 = 1. ag{3.9}$$

Putting (3.8) and (3.9) into (3.2) and using separation of variables

$$\frac{p_{11}}{p} = \frac{q_{11}}{q} = \frac{r_{11}}{r} = m \tag{3.10}$$

and

$$\gamma_{22} + m\gamma = \frac{2\gamma_2^2}{f_\pi^2 + \gamma^2},$$
(3.11)

where *m* is a function of $(x^3 - x^4)$.

(3.10) can easily be integrated, but p, q and r must also satisfy (3.9). From this it follows that m must be negative and we have the following solutions for p, q and r:

$$p = A \cos nx^{1} + B \sin nx^{1}, \qquad q = C \cos nx^{1} + D \sin nx^{1}, r = E \cos nx^{1} + F \sin nx^{1}, \qquad (3.12)$$

where n, A, B, C, D, E and F are functions of $(x^3 - x^4)$ satisfying

$$A^{2}+C^{2}+E^{2}=1,$$
 $B^{2}+D^{2}+F^{2}=1,$ $AB+CD+EF=0$ (3.13)

and $m = -n^2$.

(3.11) can be integrated to give

$$\int \frac{\mathrm{d}\gamma}{\exp[2/(f_{\pi}^2 + \gamma^2)] \{H + 2n^2 \int \gamma \exp[-4/(f_{\pi}^2 + \gamma^2)] \,\mathrm{d}\gamma\}^{1/2}} = \pm x^2 + I, \qquad (3.14)$$

H and I being arbitrary functions of $(x^3 - x^4)$.

4. Conclusion

In summing up, we note that case 2 in § 2.2 can, by a suitable choice of coordinates, be expressed as a special case of solution 1 in § 3.1. Thus we have only the following three solutions of (1.1) here.

4.1. Solution 1

 ϕ , ψ and χ are given by (3.5), where g, h, i, j, k and l are functions of $(x^3 - x^4)$, and α is given by (3.6) and (3.7).

4.2. Solution 2

 ϕ , ψ and χ are given by (3.8) where p, q and r are given by (3.12), γ is given by (3.14), n, A, B, C, D, E, F, H and I are arbitrary functions of $(x^3 - x^4)$.

4.3. Solution 3

 ϕ , ψ and χ are given by (2.5), *a*. *b*, *c*, *d*, *e* and *f* being constants, and *u* is given by (2.6) and (2.7).

Of these three types of solutions, solutions 1 and 2 have non-vanishing derivatives of ϕ , ψ and χ at infinity and hence cannot represent soliton solutions. However, solution 3 includes the soliton solution as a special case as can be seen as follows.

Integrating the right-hand side of (2.6), we get

$$U = -Q + P \tan(\zeta RA)$$

where

$$P = \frac{(b^{2} + d^{2} + f^{2} + f^{2})/(a^{2} + c^{2} + d^{2}) - (ab + cd + ef)^{2}}{(a^{2} + c^{2} + d^{2})^{2}},$$

$$Q = \frac{ab + cd + ef}{a^{2} + c^{2} + d^{2}}, \qquad R = a^{2} + c^{2} + d^{2},$$
(4.1)

a, b, c, d, e and f being the same constants as in (2.6) and ζ is a solution of (2.7), ϕ , ψ and χ are given by (2.5).

If the particular solution of (2.7) that we pick here is

$$\zeta = \frac{\sin r}{r} \cos t \tag{4.2}$$

where $r^2 = (x^1)^2 + (x^2)^2 + (x^3)^2$ and $t = x^4$ and R and A are such that $\max(\sin r/r) < \pi/2RA$. Obviously $\sin r/r$ is bounded, so it is easy to see from (2.5), (4.1) and (4.2) that ϕ , ψ and χ and their derivatives are bounded everywhere and the derivatives of ϕ , ψ and χ vanish sufficiently fast at infinity for the integral of Hamiltonian density over entire space to be finite. Thus we get a soliton solution.

Acknowledgments

The author thanks J Strathdee, D Wilkins and M Singer for useful discussions. Also the author is grateful to Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste.

References

Charap J M 1973 J. Phys. A: Math., Nucl. Gen. 6 987 — 1976 J. Phys. A: Math. Gen. 9 1331