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COMMENT 

Exact solutions to non-linear chiral field equations 

Dipankar Ray? 
International Centre for Theoretical Physics, Miramare, PO Box 586, 34100 Trieste, Italy 

Received 19 September 1977, in final form 30 December 1977 

Abstract. Two types of exact solutions for the non-linear field equations for the chiral 
invariant model of pion dynamics are presented here. One of them is a generalisation of 
the solutions obtained by Charap. This more general solution includes the soliton solution 
as a special case. 

1. Introduction 

Under tangential parametrisation (Charap 1973) the field equations for the chiral 
invariant model of pion dynamics take the form (Charap 1976) 

where 
0 for p # U, 

q,”= 1 for p = E. # 4, 

1-1 for p = Y = 4, 
p = ln(f$ + 4’+ ( I~  + x2), 

f,, is a constant, and 4, (I and x are the pion field triplet. The Lagrangian is given by 

L = t(gll a p 4  a w 4  + gZ2 a,$ a”$ + g33 a,x 8% + 2g12 a,4 
+ 2g13 a,4 afiX + 2g23 a,* aFx) (1.2) 

rt= - ( f2 , ,+42+~2- tX2) -1 (~:~ i++Sf4 j ) .  (1.3) 

where the gii are such that rii, the Christoffel symbols, take the form 

In (1.3), 41, 42 and 43 represent respectively 4, (I and x. 
Charap obtained solutions of (1.1) under the assumption that 4, (I and ,y are all 

functions of klx’+ kzx2+ k3x3  + k4x4 where k, is any four-vector. But such solutions 
give non-vanishing derivatives of 4,(I, x at infinity and hence cannot represent soliton 
solutions. However, in the present note, we shall see that equations (1.1) and (1.2) 
can be integrated under a weaker assumption that there exists some function U, such 
that 4, (I and x are functions of U. These solutions include the soliton solution as a 
special case. Another class of solutions of (1.1) and (1.2) will also be presented here. 

t Now at Department of Physics, New York University, New York 10003, USA. 
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2. Generalisation of Charap's solution 

Assume that there exists a function U such that 

4 = 4 ( u ) ,  * = * ( U ) ,  x = x ( 4 ;  

( 4 u u  - 4 d U ) ( u :  + U :  + U :  - U$)+ d u 0 u  = 0, 

(+UU - +,pU)(u: + U :  + U :  - U t )  + * u o u  = 0 ,  

cyuu - xupu)(u: + U :  + U :  - U t )  + x u o u  = 0. 

4 u u  - 4 u P u  - - *uu - *&U - - x u u  - X U P U  

(1.1) then reduces to: 

dU =d4/du  and so on; U I  = W a x ' ,  and so on. From (2.2), either 

4U * U  x u  

or 
2 2  u:+u:+u3-u4=0 and Ou=O.  

2.1. Case 1: (2.3) is true 

(2.3) can be simplified to 

4 u u  *uu x u u  

4 u  *U x u '  
-=-=- 

which, on integration, shows that 4 and 4 are linearly related and so are 
Then one can choose U ,  consistent with (2.1) such that 

and x. 

x = eu + f, 
where a, 6, c, d ,  e and f are constants. 

Putting (2.5) into (1.1) and (1.2), we see that (2.5) satisfies (1.1) if U is given by 

' = 1 (a2  + c 2  + e2)u2+ 2u(ab + cd + e f )+  (bz  + d2+fZ  +f:)' (2.6) 
du 

where C satisfies 

51 1 + 5 2 2  + 1 3 3  - 544 = 0. (2.7) 
(2.6) can readily be integrated to give U in terms of C and (2.7) has the known 
solutions. 

2.2. Case 2: (2.4) is true 

(2.4) is satisfied by 

U = G ( k 1 x ' + k z x Z + k ~ x 3 + k ~ x 4 ) ,  
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where 

k: + k:+ k i -  kq = 0, 

k l ,  k2, k3  and k4 being constants, and G being an arbitrary function. 
Thus, when U is given by (2.8) and (2.9), (2.1) gives a class of solutions of (1.1). 

However, other solutions of (2.4), if found, will also give solutions of (1.1) of the form 
(2.1). 

3. Other types of solutions 

Assume 

4 = 4 ( x 1 , x 2 , x 3 - x 4 ) ,  
* = *(x ' ,  x 2 ,  x 3 - x 4 ) ,  

x = x ( x  , x  , x  -x".  1 2 3  

When 4, JI and x are of the form (3.1), equations (1.1) reduce to 

4 1 1 + 4 2 2 = 4 1 P 1 + 4 2 P z t  

*11+ *22 = *lP1+ * 2 P 2 ,  

x 1 1 + x 2 2  =xlPl+XzP2. 

It is to be noted that although 4, I+!I and x are functions of three variables x l ,  x 2 ,  

Although the present author has failed to solve (3.2) completely, particular solu- 
x 3 - x 4 ,  (3.2) involves two variables, x 1  and x2 ,  only. 

tions of (3.2) can be picked up easily. Two such solutions are presented here. 

where 
1 2 3  4 a = a ( x  , x  , x  - x  ). (3.4) 

Proceeding as in 0 2, but noting that a: + a: 5 0, we get the following solution: 

4 = ga + h, $ = ia + j ,  x = ka + I ,  (3.5) 

where g, h, i, j ,  k and 1 are functions of ( x3  - x 4 )  and a is given by 

d a  
6 = I (g'+ i 2 +  k2)aZ+2a(gh + ij+ kl)+ ( h z + j 2 +  r z + f : )  (3.6) 

and 6 satisfies 

5 1 1 + 6 2 2 = 0 .  (3.7) 
As before, the right-hand side of (3.6) can be integrated to express a in terms of 5. 
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3.2. Solution 2 

Assume 

f#) = y ( x 2 ,  x 3 - x 4 ) p ( x 1 ,  x3-x ' ) ,  

+= y ( x 2 ,  x3-x4)q(x1 ,  x3-x ' ) ,  

,y = y ( x 2 ,  x3-x4)r (x1 ,  x 3 - x 4 ) ,  

such that 

p Z + q 2 + r 2 =  i .  

Putting (3.8) and (3.9) into (3.2) and using separation of variables 

and 

2YZ 
f W + Y 2 '  

Y22fmY =z 

(3.10) 

(3.11) 

where m is a function of (x3-x4) .  
(3.10) can easily be integrated, but p ,  q and r must also satisfy (3.9). From this it 

follows that m must be negative and we have the following solutions for p ,  q and r :  

p = A  c o s n x ' + B s i n n x ' ,  

r = E cos n x ' + F  sin n x l ,  

q = C cos nx' + D sin nx' ,  
(3.12) 

where n, A, B, C, D, E and F are functions of (x3-x ' )  satisfying 

A ~ + c ~ + E ~ =  1, B ' + D ~ + F ~ = I ,  AB  + CD + EF = 0 

and m = -n . 2 

(3.11) can be integrated to give 

1 / 2  = * x 2  + I ,  dY 
expP/(f: + r2)1{H+2n2 5 Y exp[-4/(f; + r2)1 dyl 

H and I being arbitrary functions of ( x 3 - x 4 ) .  

(3.13) 

(3.14) 

4. Conclusion 

In summing up, we note that case 2 in § 2.2 can, by a suitable choice of coordinates, be 
expressed as a special case of solution 1 in § 3.1. Thus we have only the following 
three solutions of (1.1) here. 

4.1. Solution 1 

4,+ and ,y are given by ( 3 . 9 ,  where g, h, i, j ,  k and 1 are functions of ( x 3  - x 4 ) ,  and a is 
given by (3.6) and (3.7). 
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4.2.  Solution 2 

q5, I/, and ,y are given by (3.8) where p ,  q and r are given by (3.12), y is given by (3.14), 
n, A, B, C, D, E,  F, H and I are arbitrary functions of (x3-x4). 

4.3. Solution 3 

4, I/, and ,y are given by (2.5), a. b, c, d ,  e and f being constants, and U is given by (2.6) 
and (2.7). 

Of these three types of solutions, solutions 1 and 2 have non-vanishing derivatives 
of 4, 4 and ,y at infinity and hence cannot represent soliton solutions. However, 
solution 3 includes the soliton solution as a special case as can be seen as follows. 

Integrating the right-hand side of (2.6), we get 

U = -Q + P tan(lRA) 

where 

( b 2 + d 2 + f 2 + f : ) / ( a 2 + c 2 + d 2 ) - ( a b  +cd+ef)’ 
(a2  + c 2  + d2)’ P =  9 

ab + cd + ef 
a2 + c 2  + d2’  R = a 2 + c 2 + d 2 ,  Q =  

a,  b, c, d, e and f being the same constants as in (2.6) and 5 is a solution of (2.7), q5, 4 
and ,y are given by (2.5). 

If the particular solution oi (2.7) that we pick here is 

sin r 
t=-cos1 

r 

where r 2  = ( x ’ ) ’ +  (x2j2+ (x3) ’  and t = x 4  and R and A are such that max(sin r / r ) <  
i7/2RA. Obviously sin r/r is bounded, so it is easy to see from (2.5), (4.1) and (4.2) 
that 4, 4 and ,y and their derivatives are bounded everywhere and the derivatives of 
4, 4 and ,y vanish sufficiently fast at infinity for the integral of Hamiltonian density 
over entire space to be finite. Thus we get a soliton solution. 
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